
IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 4, April 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3426 120

A System Dynamics Approach towards Software

Development Project- A Case Study

Pijush Chandra Das
1
, U.R. Dhar

2

Research Scholar, Business Administration, Gauhati University, Guwahati, India
1

Retired Professor, Gauhati University, and Professor, Royal School of Business, Guwahati, India
2

Abstract: Managing production and operations with available resources have become the most challenging job of

today’s software industry. This involves not only optimizing on available resources but achieving improved

productivity with minimum cost of production, controlled overruns and adherence to schedule. The challenge to

optimize becomes even more hard-hitting and uncompromising when the requirement changes are too frequent as in

case of agile software production system. This dynamic behaviour of agile software production systems can be

modelled using system dynamics (SD). The software production process can be modelled and its behaviour predicted

along with consequences of managerial policies on the production system. Agile development is one of the solutions to

the problem of extremely complicated methods, which is being adopted of late by various software production systems.

Hence, the prime objective of this research is to investigate how the application of system dynamics can aid in the

performance analysis and improvement of Agile software production systems. The paper puts forth some of the

dynamic forces that affect Quality Assurance (QA) activity which are modeled using system dynamics. The feedback

loops developed explain how schedule pressure in an ongoing software project, which arises when the project is behind

its time schedule, leads to an increased error generation rate. With increasing number of errors committed, a major part

of the available resources (man, machine, money etc.) are utilized in error correction and rework instead of

development activities. This adversely affects the project's progress rate thereby leading to increase in schedule

pressures and adding to greater cost of poor quality.

Keywords: Agile software development, software projects, system dynamics, change request.

I. INTRODUCTION

The software projects have always been facing excess

effort overshoot, schedule pressure and increase in rework

due to more of defects injected in the system because of

Requirement management problem. This is due to the

changing scenario of software development where

requirements keep on varying between the iterations and

within iteration. After functionalities have been developed

for iteration the customer on reviewing it may either go for

no change or go for changes. Contrary to the plan-driven

cascading waterfall method for researchers and

practitioner’s agile methodology has become an

alternative to overcome the cost, effort overrun, and

schedule slippage and quality problems [22]. Agile

Methods like XP-extreme programming, SCRUM and

Dynamic System Development Methodology have been

introduced [2][3][4]. These methods have enabled teams

in quickly responding to frequent changes in the

requirements [5]. The cost of accommodating a change at

a later stage in the iterations is more. The cost and project

risk minimizes to an extent because of the ability of agile

project teams to respond fast to changes [2]. This paper

studies how a System dynamic model can be used to

understand the impact of requirement volatility in an agile

scenario which causes frequent changes in the project and

schedule pressure.

II. LITERATURE REVIEW

Rapid advances in technical environment quickly evolving

system requirements demand a flexible approach like agile

to develop software systems. The agile methodology is

now widely in vogue in software projects but the

effectiveness and appropriateness is not extensively

proved through empirical research. A system dynamic

model was developed taking the interdependencies of the

various approaches of agile development. An integrated

system dynamic model is studying the two most important

aspects like refactoring and pair programming of agile

methodology. Through this new integrated tool some of

factors like customer involvement, refactoring, pair

programming, agile planning and control and change

management are being investigated thoroughly [23]. Agile

approach may not suitable for large-mission critical

projects because of low test coverage, focus on quick

response and dearth of appropriate architecture planning

[7]. The type of project, size of the project, the experience

of team members and the domain knowledge level of both

project team, client and also commitment of customers

are the other constraints for the implementation of agile

methodology [19], [20].

D. Philips has studied the impact of agile methods on the

project team resources, the project itself and process

implemented in the project [6]. Scrum is the most

extensively used agile methodology and Lean-Kanban is

the fastest growing agile methodology. Cocco et al. has

done a comparative analysis of the dynamic behavior of

the Kanban and scrum framework versus the traditional

waterfall model [21]. Agile methodology is iterative,

incremental, adaptive, self-organizing and evolving.

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 4, April 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3426 121

III. OBJECTIVE OF THE STUDY

The objectives of the study are:

1. How requirement Changes impact Agile software

development Projects.

2. How interdependencies work in an agile approach and

schedule and other associated variables impact.

3. Role of feedback loop in agile software projects.

4. How effective is Causal loop diagram in linking task of

agile projects?

IV. METHODOLOGY

A. Model structure

Schedule pressure is a main variable of our system

Dynamic Model. Schedule slippage is a very well known

phenomenon in the development of application software as

well as in software product development [15]. The team

members feel the inadequacy of time in an agile

methodology project due to the urgency of releases. Since

in the beginning we are not very clear regarding the

number of task associated with a project, perfect effort

estimation remains a challenge. Software development is

not deterministic in nature [11],[9].

When Project estimation is done, other than including the

highly visible main components, project management has

to emphasise on the less visible components also. As

more and more task are added on as the project execution

progresses the requirement for additional effort and time

increases, the schedule pressure increases unless the

scheduled is revised or more resource allocation is done.

B. Simulation Model

The extensively tested model of Abdel Hamid [8] is

considered in our experimentation. The various

enhancement modules of the development project MTR

each of 120 days duration has been taken for our study and

divided into iterations of multiple parts of Agility level.

Fig. 1 Source Abdel Hamid et al. [8]

More the levels of agility as the levels of iterations

increases. As the number of iterations increases more the

reviews and more the number of release due dates. In

waterfall life cycle development when the project realizes

that they have huge schedule variance there is only one

revised and final due date fixed, which leads to overwork.

In an agile approach at the end of each iteration there are

multiple schedule pressure peaks. Therefore due to

overwork, more rework and schedule crunch is spread

throughout the project life cycle. The more the effort put

by working overtime the rate of software development

increases. As we proceed with more iterations in the

further stages the discovery of additional task reduces and

hence the number remaining task to be completed reduces.

Since with increasing overtime and overwork the team

learns faster and hence the experience and productivity of

the project team enhances [17], [12], [13], [18], [10]. The

agile project iterations have multiple sprint due dates in

comparison to the waterfall model which disrupts in the

learning curve of the project team and also affects

productivity [16].

C. COCOMO (Constructive cost model) Estimation for

one enhancement of MDOCS Project

The enhancement module of the MDOCS project consists

of around 18000 LOC each and the schedule duration of

them is 120 days. The COCOMO equations are used to

estimate the project effort in Person-days from the number

of KLOC.

Planned person-days for project = 2.73*19*(perceived

project size in LOC/1000)
1.05

Perceived Project size = Actual Project size in LOC

 X

 uncertainty fraction= 18000*0.65

 = 11700 LOC.

Planned person-days for Project = 2.73*19(11700/ 1000)1.05

= 687 person-days.

The number of resources is taken as 8.

As the number of task is now finally known 18000 LOC

then 1078 person days are required. So with a team of 8 it

would take 134 days. Therefore with 8 project team

members the schedule pressure will increase and excess

effort for overtime work will be required.

V. CONTEXT OF THE CASE STUDY

There are two scenarios that are considered in this case

study. One is no change request received from the

customer between the iterations and the other is change

request received from the customer. Here the duration of

the iteration of the various Enhancement modules of

MDOCS project is taken as a parameter to probe its

influence on schedule. The duration of each Enhancement

to be delivered to the customer is 120 days. The Level of

Agility (iterations) means the modules are divided into

equal sizes of those many parts. In case of no change

request, data is simulated from the model and the data for

the requirement change (CRs) is from the enhancement

module of the Live MDOCS project (primary data).

Tasks to be

developed

Tasks

developed
discovery rate of

new tasks
software

development rate

Undetected

errors
Detected

errors
error generation

rate

error discovery

rate
error rework rate

QA manpower

neede per error
<Tasks

developed>

<software

development rate>

+
+

+

-

+

schedule pressure

person days required

until due date

scheduled

development time

mandays remaining

until due date

<Time>

-

+
-

+

+

+

overwork

+

+

-

productivity

-

+

Experience
change in

experience

+

+

turnover

-

Exhaustion

+

-

change of

exhaustion+

exhaustion and turnover loop

overwork loop

errors and rework loop

learning loop

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 4, April 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3426 122

A. Data Analysis and Result Interpretation

TABLE 1 SIMULATED DATA AND DATA OF MDOCS

PROJECT ENHANCEMENTS MODULE OF NO CHANGE AND

REQUIREMENT CHANGE (CRS) SCENARIO.

It
er

a
ti

o
n

s

It
er

a
ti

o
n

 D
u

ra
ti

o
n

 (
D

a
y

s)

D
ef

ec
t

le
a

k
a

g
e
 (

n
o

 c
h

a
n

g
e)

E
ff

o
rt

 (
P

er
so

n
 D

a
y

s)
 f

o
r

N
O

 C
H

A
N

G
E

A
ct

u
a

l
ti

m
e
 (

in
 d

a
y

s)

D
ef

ec
t

L
ea

k
a

g
e

(r
eq

u
ir

em
en

t
ch

a
n

g
es

)

E
ff

o
rt

 (
P

er
so

n
 D

a
y

s)
 F

O
R

C
H

A
N

G
E

S

A
ct

u
a

l
ti

m
e
 (

in
 d

a
y

s)

Iteration

1

12

0

21

7

102

6

129 220 1045 13

1

Iteration

2

60 20

1

998 126 215 1032 12

9

 Iteration

3

40 19

2

987 125 208 1020 12

6

Iteration

4

30 18

0

990 122 194 1014 12

5

Iteration

5

24 16

4

988 122 178 1006 12

5

Iteration

6

20 16

0

977 121 180 995 12

2

Iteration

7

17 17

2

995 123 199 1020 12

7

Iteration

8

15 20

7

100

0

123 204 1030 13

0

Iteration

9

13 23

0

101

5

124 254 1035 13

3

Iteration

10

12 24

9

103

2

125 320 1087 14

0

B. Trend of Iteration duration on defect count

The defect generation is the least in-case of iteration 6.

Hence Schedule pressure will reduce and rework will be

less. The exhaustion in the project will decrease,

productivity gradually increasing with decreasing turn

over [1], [14].

Fig. 2 Effect of iteration duration on defect count

(X-axis: No. of iterations, Y-axis: defect count)

C. Trend of iteration duration on actual effort of the

project

The effort for both no change context and requirement

change is decreasing gradually and it is the minimal in

case of iteration or agility level 6. Since for reducing

effort, schedule pressure is reducing there are indication

that cost of the project will be less and productivity of the

team members will improve.

Fig. 3 Effect of iteration duration on actual effort of the

project (X-axis: No. of iterations, Y-axis: effort)

VI. DISCUSSION, RECOMMENDATION AND

FUTURE RESEARCH WORK

The usage of System dynamic model in case of Agile

approach of software project development and finding

positive and improved trend shows that there is good

scope for SD in Agile development environment. The

model in future needs to be implemented in case of

multiple projects across multiple domains of agile

approach. A new vast area of research will be thrown open

if the results are visibly consistent across domains and

technology. In addition to this there are also avenues to

develop a comprehensive, commercialized software

project management tool using system dynamics, having

provision for both agile and waterfall lifecycle approach.

REFERENCES

[1] Moore, Jo E., One road to turnover: an examination of work

exhaustion in technology professionals, MIS Quarterly. 24:1:141-
168. 2000.

[2] K. Beck, Extreme programming explained. Addison- Wesley. 2000.

[3] J. Coplien and J. Ostergaard, SCRUM: It’s all about common sense,
Scrum Training Institute, Scrum Alliance, Inc. 2009.

[4] J. Stapleton, DSDM – Dynamic System Development Method.

Addison-Wesley. 1995.
[5] Paetsch, F., A. Eberlein, and F. Maurer, “Requirements Engineering

and Agile Software Development,” Proceedings of the 12th IEEE

International Workshops on Enabling Technologies: Infrastructure
for Collaborative Enterprises, 2000, pp. 308 – 313.

[6] D. Phillips, The Software Project Manager’s Handbook: Principles

that work at Work, IEEE Computer Society Press. 1998.
[7] Boehm, B., Get Ready for Agile Methods, with Care, Computer,

pp. 64-69. 2002.

[8] Abdel-Hamid, Tarek K., and Stuart E. Madnick, Software Project
Dynamics – an integrated approach. Prentice Hall, Englewood

Cliffs, New Jersey. 1991.

[9] Boehm B. and Barry W. , Software Engineering Economics.
Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1981.

Boh, Wai Fong, Sandra A. Slaughter, and J. Alberto Espinosa,

0

50

100

150

200

250

300

350

0 5 10 15

Defect
leakage (no
change)

Defect
Leakage(req
uirement
changes)

960

980

1000

1020

1040

1060

1080

1100

0 5 10 15

effort(Pers
on-days)
for NO
CHANGE

Effort(Perso
n Days) FOR
CHANGES

IARJSET ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

International Advanced Research Journal in Science, Engineering and Technology
 Vol. 3, Issue 4, April 2016

Copyright to IARJSET DOI 10.17148/IARJSET.2016.3426 123

“Learning from Experience in Software Development: A Multilevel

Analysis,” Management Science, 53(8):1315-1331.2007.

[10] Brooks Jr. and Fred P., The Mythical Man-Month, Essays on
Software Engineering, University of North Carolina, Chapel Hill,

Addison-Wesley Publishing Company. 1979.

Ford, David N., and John D. Sterman, “Dynamic modeling of
product development processes”, System Dynamics Review,

14:1:31-68.1998.

[11] Kessler, Eric H. and Paul E. Bierly, “Is faster really better? An
empirical test of the implications of innovation speed,” IEEE

Transactions on Engineering Management.49:1:2-12. 2002.

[12] Oliva, Rogelio, and John D. Sterman, “Cutting Corners and
Working Overtime: Quality Erosion in the Service Industry,”

Management Science. 47:7:894-914. 2001. Perlow, Leslie A., “The

Time Famine: Toward a Sociology of Work Time,” Administrative
Science Quarterly, 44:57-81. 1999. Seshadri, Sridhar, and Zur

Shapira, “Managerial Allocation of Time and Effort: The Effects of

Interruptions,” Management Science, 47:5:647-662. 2000.
[13] Sterman, John D., Business Dynamics - Systems Thinking and

Modeling for a Complex World, Irwin McGraw-Hill, Boston. 2000.

Wiersma, Eelke, “Conditions that Shape the Learning Curve:
Factors that Increase the Ability and Opportunity to Learn,”

Management Science, 53: 12:1903-1915. 2007.
[14] Erickson,J., Lyytinen,K. and Siau, K., “Agile modeling, agile

software development and extreme programming: The state of

research,” Journal of Database Management, 16, 88–99. 2005.
[15] Fitzgerald,B., Hartnett,G., and Conboy, K., “Customizing agile

methods to software practices at Intel Shannon,” European Journal

of Information Systems, 15, 200–213. 2006.
[16] L. Cocco, K. Mannaro, G. Concas, and M. Marchesi (2011),

Simulating Kanban and Scrum vs. Waterfall with System

Dynamics, Chapter :Agile Processes in Software Engineering and
Extreme Programming, Volume 77 of the series Lecture Notes in

Business Information Processing, Springer, pp 117-131. 2011.

[17] K.van Oorschot, K. Sengupta and Luk van Wassenhove,
“Dynamics of Agile Software Development,” Proceedings of the

International Conference of the System Dynamics Society. 2009.

[18] L. Cao, B. Ramesh, and T. Abdel-Hamid (2010), “Modeling
dynamics in agile software development,” Journal ACM on

Management Information Systems (TMIS), Article No. 5, Volume

1 Issue 1. 2010.

http://link.springer.com/book/10.1007/978-3-642-20677-1
http://link.springer.com/book/10.1007/978-3-642-20677-1
http://link.springer.com/book/10.1007/978-3-642-20677-1
http://link.springer.com/bookseries/7911
http://link.springer.com/bookseries/7911
http://link.springer.com/bookseries/7911

