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Abstract: Managing production and operations with available resources have become the most challenging job of 

today’s software industry. This involves not only optimizing on available resources but achieving improved 

productivity with minimum cost of production, controlled overruns and adherence to schedule. The challenge to 

optimize becomes even more hard-hitting and uncompromising when the requirement changes are too frequent as in 

case of agile software production system. This dynamic behaviour of agile software production systems can be 

modelled using system dynamics (SD).  The software production process can be modelled and its behaviour predicted 

along with consequences of managerial policies on the production system. Agile development is one of the solutions to 

the problem of extremely complicated methods, which is being adopted of late by various software production systems. 

Hence, the prime objective of this research is to investigate how the application of system dynamics can aid in the 

performance analysis and improvement of Agile software production systems. The paper puts forth some of the 

dynamic forces that affect Quality Assurance (QA) activity which are modeled using system dynamics. The feedback 

loops developed explain how schedule pressure in an ongoing software project, which arises when the project is behind 

its time schedule, leads to an increased error generation rate. With increasing number of errors committed, a major part 

of the available resources (man, machine, money etc.) are utilized in error correction and rework instead of 

development activities. This adversely affects the project's progress rate thereby leading to increase in schedule 

pressures and adding to greater cost of poor quality. 
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I. INTRODUCTION 
 

The software projects have always been facing excess 

effort overshoot, schedule pressure and increase in rework 

due to more of defects injected in the system because of 

Requirement management problem. This is due to the 

changing scenario of software development where 

requirements keep on varying between the iterations and 

within iteration. After functionalities have been developed 

for iteration the customer on reviewing it may either go for 

no change or go for changes. Contrary to the plan-driven 

cascading waterfall method for researchers and 

practitioner’s agile methodology has become an 

alternative to overcome the cost, effort overrun, and 

schedule slippage and quality problems [22]. Agile 

Methods like XP-extreme programming, SCRUM and 

Dynamic System Development Methodology have been 

introduced [2][3][4].  These methods have enabled teams 

in quickly responding to frequent changes in the 

requirements [5]. The cost of accommodating a change at 

a later stage in the iterations is more. The cost and project 

risk minimizes to an extent because of the ability of agile 

project teams to respond fast to changes [2]. This paper 

studies how a System dynamic model can be used to 

understand the impact of requirement volatility in an agile 

scenario which causes frequent changes in the project and 

schedule pressure. 
 

II. LITERATURE REVIEW 
 

Rapid advances in technical environment quickly evolving 

system requirements demand a flexible approach like agile  

 
 

to develop software systems. The agile methodology is 

now widely in vogue in software projects but the 

effectiveness and appropriateness is not extensively 

proved through empirical research. A system dynamic 

model was developed taking the interdependencies of the 

various approaches of agile development. An integrated 

system dynamic model is studying the two most important 

aspects like refactoring and pair programming of agile 

methodology. Through this new integrated tool some of 

factors like customer involvement, refactoring, pair 

programming, agile planning and control and change 

management are being investigated thoroughly [23]. Agile 

approach may not suitable for large-mission critical 

projects because of low test coverage, focus on quick 

response and dearth of appropriate architecture planning 

[7]. The type of project, size of the project, the experience 

of team members and the domain knowledge level of both 

project team, client and  also commitment of customers 

are the other constraints for the implementation of agile 

methodology [19], [20].   
 

D. Philips has studied the impact of agile methods on the 

project team resources, the project itself and process 

implemented in the project [6]. Scrum is the most 

extensively used agile methodology and Lean-Kanban is 

the fastest growing agile methodology. Cocco et al. has 

done a comparative analysis of the dynamic behavior of 

the Kanban and scrum framework versus the traditional 

waterfall model [21]. Agile methodology is iterative, 

incremental, adaptive, self-organizing and evolving. 
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III. OBJECTIVE OF THE STUDY 
 

The objectives of the study are: 
 

1. How requirement Changes impact Agile software 

development Projects. 

2. How interdependencies work in an agile approach and 

schedule and other associated variables impact. 

3. Role of feedback loop in agile software projects.  

4. How effective is Causal loop diagram in linking task of 

agile projects? 
 

IV.  METHODOLOGY 
 

A. Model structure 

Schedule pressure is a main variable of our system 

Dynamic Model. Schedule slippage is a very well known 

phenomenon in the development of application software as 

well as in software product development [15]. The team 

members feel the inadequacy of time in an agile 

methodology project due to the urgency of releases. Since 

in the beginning we are not very clear regarding the 

number of task associated with a project, perfect effort 

estimation remains a challenge. Software development is 

not deterministic in nature [11],[9]. 
 

When Project estimation is done, other than including the 

highly visible main components, project management has 

to emphasise on the less   visible components also.  As 

more and more task are added on as  the project execution 

progresses the requirement for  additional effort and time 

increases, the  schedule pressure increases unless the 

scheduled is revised or more resource allocation is done. 
 

B. Simulation Model  

The extensively tested model of Abdel Hamid [8] is 

considered in our experimentation. The various 

enhancement modules of the development project MTR 

each of 120 days duration has been taken for our study and 

divided into iterations of multiple parts of Agility level. 
 

 
 

Fig. 1 Source Abdel Hamid et al. [8] 

More the levels of agility as the levels of iterations 

increases. As the number of iterations increases more the 

reviews and more the number of release due dates. In 

waterfall life cycle development when the project realizes 

that they have huge schedule variance there is only one 

revised and final due date fixed, which leads to overwork. 

In an agile approach at the end of each iteration there are 

multiple schedule pressure peaks. Therefore due to 

overwork, more rework and schedule crunch is spread 

throughout the project life cycle. The more the effort put 

by working overtime the rate of software development 

increases. As we proceed with more iterations in the 

further stages the discovery of additional task reduces and 

hence the number remaining task to be completed reduces.  

Since with increasing overtime and overwork the team 

learns faster and hence the experience and productivity of 

the project team enhances [17], [12], [13], [18], [10]. The 

agile project iterations have multiple sprint due dates in 

comparison to the waterfall model which disrupts in the 

learning curve of the project team and also affects 

productivity [16]. 
 

C. COCOMO (Constructive cost model) Estimation for 

one enhancement of  MDOCS Project    

The enhancement module of the MDOCS project consists 

of around 18000 LOC each and the schedule duration of 

them is 120 days.  The COCOMO equations are used to 

estimate the project effort in Person-days from the number 

of KLOC. 
 

Planned person-days for project = 2.73*19*(perceived 

project size in LOC/1000)
1.05

  
 

Perceived Project size = Actual Project size in LOC 

    X         

             uncertainty fraction= 18000*0.65 

 = 11700 LOC. 
 

Planned person-days for Project = 2.73*19(11700/ 1000)1.05
 

= 687 person-days.  
 

The number of resources is taken as 8. 
 

As the number of task is now finally known 18000 LOC 

then 1078 person days are required. So with a team of 8 it 

would take 134 days. Therefore with 8 project team 

members the schedule pressure will increase and excess 

effort for overtime work will be required.  
 

V. CONTEXT OF THE CASE STUDY 
 

There are two scenarios that are considered in this case 

study. One is no change request received from the 

customer between the iterations and the other is change 

request received from the customer. Here the duration of 

the iteration of the various Enhancement modules of 

MDOCS project is taken as a parameter to probe its 

influence on schedule. The duration of each Enhancement 

to be delivered to the customer is 120 days. The Level of 

Agility (iterations) means the modules are divided into 

equal sizes of those many parts. In case of no change 

request, data is simulated from the model and the data for 

the requirement change (CRs) is from the enhancement 

module of the Live MDOCS project (primary data). 
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A. Data Analysis and Result Interpretation  
 

TABLE 1 SIMULATED DATA AND DATA OF MDOCS 

PROJECT ENHANCEMENTS MODULE OF NO CHANGE AND 

REQUIREMENT CHANGE (CRS) SCENARIO.  
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B. Trend of Iteration duration on defect count 

The defect generation is the least in-case of iteration 6. 

Hence Schedule pressure will reduce and rework will be 

less. The exhaustion in the project will decrease, 

productivity gradually increasing with decreasing turn 

over [1], [14]. 
 

 
 

Fig. 2 Effect of iteration duration on defect count 

(X-axis: No. of iterations, Y-axis: defect count) 

C. Trend of iteration duration on actual effort of the 

project 

The effort for both no change context and requirement 

change is decreasing gradually and it is the minimal in 

case of iteration or agility level 6. Since for reducing 

effort, schedule pressure is reducing there are indication 

that cost of the project will be less and productivity of the 

team members will improve. 
 

 
 

Fig. 3 Effect of iteration duration on actual effort of the 

project (X-axis: No. of iterations, Y-axis: effort) 

 

VI.  DISCUSSION, RECOMMENDATION AND  

FUTURE RESEARCH WORK 
 

The usage of System dynamic model in case of Agile 

approach of software project development and finding 

positive and improved trend shows that there is good 

scope for SD in Agile development environment. The 

model in future needs to be implemented in case of 

multiple projects across multiple domains of agile 

approach. A new vast area of research will be thrown open 

if the results are visibly consistent across domains and 

technology. In addition to this there are also avenues to 

develop a comprehensive, commercialized software 

project management tool using system dynamics, having 

provision for both agile and waterfall lifecycle approach. 
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